
Integrated Intelligent Research (IIR) International Journal of Computing Algorithm

Volume: 03 Issue: 02 June 2014 Pages: 176-180

ISSN: 2278-2397

176

Genetic Algorithm for Permutation Flowshop

Scheduling Problem to Minimize the Makespan

Pervaiz Iqbal
1
, P.S. Sehik Uduman

2

1
Research Scholar,

2
Professor& Head,

1,2
Department of Mathematics, B.S. AbdurRahman University, Chennai, INDIA

Email: pervaizmaths@gmail.com

Abstract

Generally the Flowshop Scheduling Problem (FSSP) is a

production environment problem where a set of n jobs has to

visit a set of m machines in the same order. In permutation

flow shops the sequence of jobs is the same on all machines

with the objective of minimizing the sum of completion

timesusing Genetic Algorithm. A significant research effort has

been devoted for sequencing jobs in a flowshop for minimizing

the make span. No machine is allowed to remain idle when a

job is ready for processing. This paper, describes the

Permutation Flowshop Scheduling Problem (PFSSP)solved by

using Genetic Algorithm (GA) to minimize the makespan. The

basic concept of genetic algorithm is, that it is developed for

finding near to optimalsolution for the minimum makespan of

the n jobs, m machines permutation flowshop scheduling

problem. It shows that the innovative genetic algorithm

approach which provides competitive results for the solution of

Permutation Flowshop Scheduling Problem.

Key Words: Flowshop Scheduling, Permutation Flowshop

Scheduling, Genetic Algorithm, Makespan.

I. INTRODUCTION

Scheduling of operations is one of the most critical issues in

the planning and scheduling of manufacturing processes.

Finding the best schedule can be very easy or difficult,

depending on the shop environment. Flowshop scheduling

problem have been extensively studied due to its application in

industrial engineering and has attracted attention from many

researchers. The general flowshop scheduling problem is a

production engineering problem where a set of n jobs have to

be processed with identical flow pattern on m machines.

Flowshop problem is usually known as NP-hard problem. The

permutation flowshop scheduling problem (PFSSP) is a

generalization of the classical Flow Shop Scheduling Problem

(FSSP) where operations allowed and processed on the

sequence of jobs is the same on all machines with the objective

of minimizing the sum of completion times. PFSSP is more

difficult than the classical FSSP, since it introduces a further

decision level beside the sequencing one, i.e., the job routes.

When the sequence of job processing on all machines is same,

then it is said to have the permutation flowshopsequencing

production environment. As passing of the jobs are not

allowed, and the number of possible schedules for n jobs is !n

.Usually, the schedule performance measure is related to an

efficient resource utilization looking for a job sequence that

minimizes the makespan which is the total time to complete the

schedule.Generally, scheduling problem depends on following

assumptions:

i) A job has some operations that each of them is to be

performed on a specified machine. Some jobs may not be

processed on some machines so that the processing time for

them is zero.

ii) Jobs are allowed to wait between two stages, and the

storage is unlimited.

iii) Setup times are included in the processing times and the

operations are sequence-independent.

iv) At a time alljobsare processed on only one machine and

every machine processes only one job.

v) The preemption of the job operations on the machines may

not be allowed.

vi) No more than one operation of the same job can be

executed at a time as well as machines cannot process more

than one job at the same time.

The flowshop scheduling problem discussed here, the order in

which jobs are processed on various machines is the same and

is completely specified. Since, the number of machines is

arbitrary, the machines may be numbered such that jobs are

processed on machine 1 first, machine 2 second,..., and

machine m last [1]. With such a nomenclature of machines, the

flowshop scheduling problem may be stated as:

"Given n jobs has to be processed on m machines in the same

order, the processing time of job i on machine j being

),...,2,1;,...,2,1(mjnit
ij

 , the problem is to find the

order in which these n jobs should be processed on the m

machines such that the total elapsed time (makespan) is

minimum".Consider a partial sequence or containing k, i.e. (k

< n) jobs and the augmentation of job to  represented by

the concatenation of  and (written as). Following the

assumptions outlined by R.A.Dudeketal. [2] the recursive

relation for the completion time of the partial sequence  of

length)1(k at machine m ,),(mT  , is as follows [3, 4,

5].

m
tmTmTmT


 )]1,();,(max[),(where

0),(),( OTmT  for all  and m .

Then, the flowshop scheduling problemas stated above is to

minimize),(mT  where  ranges over all the n jobs and

mailto:pervaizmaths@gmail.com

Integrated Intelligent Research (IIR) International Journal of Computing Algorithm

Volume: 03 Issue: 02 June 2014 Pages: 176-180

ISSN: 2278-2397

177

 ranges over all possiblesequences of)1(n jobs not

containing job [4].

1.1. Flowshop Scheduling Problem

The FlowshopScheduling Problems (FSSP) determines an

optimum sequence of n jobs to be processed on m machines

in the same order i.e. every job must be processed on machines

m,...,2,1 in this same order.

1.2. Permutation Flowshop Scheduling

The Permutation FlowshopSchedulingProblems (PFSSP) is a

special case of FSSPs where same job sequence is followed in

all machines i.e. processing order of the jobs on the machines

is the same for every machine.

1.3. Makespan

It is the completion time between the start of the first job on

first machine and the completion of last job on last machine.

1.4. Genetic Algorithmin PFSSP

In scheduling, genetic algorithm represents the schedules as

individuals or a population’s members. Each individual has its

own fitness value which is measured by the objective function.

The procedure works iteratively and this iteration is a

generation. Each generation consists of individuals who

survive from the previous generations. Usually, the population

size remains constant from one generation to the next

generation.

II. LITERATURE REVIEW

Flowshop scheduling is one of the most well-known problems

in the area of schedulingin Production Engineering. GA has

been applied to combinatorial optimization problems such as

traveling salesman problem, shortest path problem and

scheduling problem etc. A significant research effort has been

devoted for sequencing jobs in a permutation

flowshopscheduling with the objective of finding a sequence

that minimizes the makespan. For problems with 2 machines,

or 3 machines under specific constraints on job processing

times, the efficient Johnson's Algorithm i.e., S.M. Johnson [6]

obtains an optimal solution for the problem. However, this

scheduling problem is a NP-hardproblem. In Garey et al. [7]

the search for an optimal solution is of more theoretical than

practical importance. Since, 1960s a number of heuristic

methods have provided an optimal solution with limited

computation effort for flowshop sequencing.

One of earliest geneticalgorithms for the PFSP was proposed

by Chen etal. [8]. Murata etal.[9] applied GA to flowshop

scheduling problems and examined the GA with other search

algorithms. First, they examined various genetic operators to

design a genetic algorithm with an objective of minimizing the

makespan. They use twopoint crossover and the shift change

mutation for the problem and comparedthe GA with other

search algorithms, e.g. Local Search,Tabu Search and

Simulated Annealing.The algorithm is hybridized with local

search which resulted in a clear performance gain over a non

hybrid version.Another hybrid GA is due to Reeves [10]. More

recently, Ponnambalamet al.[11] evaluated a genetic algorithm

with a Generalized Position Crossover or GPX crossover, a

shift mutation and random population initialization.

Recently, Ruizetal. [12] have proposed two new advanced

genetic algorithms for the problem considered here that

provided good results at the expenses of some added

complexity in the proposed methods.In PervaizIqbal etal.[13],

job sequencing problem using advanced heuristicstechniques,

in which row sum method is discussed for solving the job

sequencing problem in order to minimize the total elapsed time

of the sequence.PervaizIqbalet al. [14] deals with the behavior

of the digestive system of a paper making plant based on

queuing theory.By assuming the serving rate of first part is

much lower than the serving rate of last and are taken into

consideration that the capacity of each part are different.

2.1. Genetic Algorithm

The Genetic Algorithm (GA) is a powerful optimization search

technique based on the principle of natural selection of the

genes for constrained and combinatorial optimization

problems. The GA was proposed by John Holland in 1975 to

encode the factors of a problem by chromosomes where each

gene represents a feature of the problem. A GA allows a

population composed of many individuals to evolve under

specific selection rule to a state that maximize the fitness

function (i.e., minimize the cost function). Here in njob

mmachine sequencing problem, job is represented as a string,

the two point crossover and mutation operators to produce an

offspring are used. The crossover probability is calculated as

the minimum elapsed time taken over by maximum elapsed

time of the optimal sequence. The basic purpose of using the

crossover probability is to select the better individuals for

crossover and mutation. In this work a sequence of jobs is

formed from the given set of jobs using GA.

2.2.Critical Block and Neighborhood Search

Figure 1: Flow Chart of genetic Algorithm

In flowshop scheduling problem, the critical path could be

found. Critical path is defined as the longest paths taken from

the first operation processed until the last operation leaves the

workspace. All operations in this path are called critical

operations and the critical operation on the same machine are

called critical block. The distance between any two schedules

Integrated Intelligent Research (IIR) International Journal of Computing Algorithm

Volume: 03 Issue: 02 June 2014 Pages: 176-180

ISSN: 2278-2397

178

by the number of differences in the processing orders of

operation on each machine is known as disjunctive graph

distance (DG distance).The neighborhood search is the most

widely used technique in combinatorial problems.A solution S

is represented as a point in the search space. The feasible

solutions in the neighborhood that can be reached from S with

exactly one transition are defined by N(S). Neighborhood

search is categorized according to the given criteria for

selecting a new point from the neighborhood Yamada et al.

[15].Neighborhoodis defined if the DG (Disjunctive Graph)

distance between S and y∈N(S) is equal to one. Another type

of transition that is also well known is called Adjacent

Swapping (AS). This transition operator exchanges a pair of

consecutive operations only on critical path to form

neighborhood. According to Yamada et al.[16] another

transition operator that is more powerful than AS is called

Critical Block neighborhood (CB Neighborhood). CB

neighborhood permutes the order of operations in critical block

by moving the operation to the beginning or end of the critical

block. Nagar et al. [17] proposed a combinedbranch-and-bound

and genetic algorithm based procedure for a flow shop

scheduling problem with objectives of meanflow time and

make-span minimization. Similarly, Neppalli et al. [18] used

genetic algorithms in their approach to solve the 2-machine

flow shop problem with the objective of minimizing make-

span and total flow time.

2.3.Selection Criteria

During each successive generation, a proportion of the existing

population is selected to breed a new generation. Individual

solutions are selected through a fitness based process, where

fitter solutions (as measured by a fitness function) are typically

more likely to be selected. Certain selection methods rate the

fitness of each solution and preferentially select the best

solutions. Other methods rate only a random sample of the

population, as this process may be very timeconsuming. Most

functions are stochastic and designed so that a small proportion

of less fit solutions are selected. This helps keep the diversity

of the population large, preventing premature convergence on

poor solutions. Popular and wellstudied selection methods

include roulette wheel selection and tournament selection.

2.4.Crossover Analysis

Next step is to perform crossover. This operator selects genes

from parent chromosomes and creates a new offspring. The

simplest way is to choose randomly some crossover point and

everything before this point copy from a first parent and then

everything after a crossover point copy from the second

parent.Crossover can then look like this (| is the crossover

point):

Table 2.1: Single Point Crossover

Chromosome 1 1110110 | 1001001101100

Chromosome 2 1110110 | 1011000011110

Offspring 1 1110110 | 1011000011110

Offspring 2 1110110 | 1001001101100

There are many other ways to make the crossover.For example,

more crossover points are chosen based on research problem.

Crossover can be rather complicated and depends on encoding

of the chromosome. Specific crossover made for a specific

problem can improve performance of the genetic algorithm.

2.5.Mutation

After the crossover operator is performed, mutation operator

takes place. This is to prevent falling all solutions in population

into a local optimum of solved problem. Mutation changes

randomly the new offspring. For binary encoding we can

switch a few randomly chosen bits from 0 to 1or from 1to 0.

Mutation can then be following:

Table 2.2: Mutation

Original offspring 1 11101101011000011110

Mutated offspring 1 11100101110000111100

Original offspring 1 11101101011000011110

Mutated offspring 1 11100101110000111100

Since, mutation depends on encoding of genes for offspring as

well as crossover. For example whileencoding permutations;

mutation could be exchanging two genes.

III. FLOW CHARTOF GA.

1. Start: -Generate random population of n chromosomes

(suitable solutions for the problem).

2. Fitness: - Evaluate the fitness)(xf of each chromosome

x in the population.

3. New population: - Create a new population by repeating

following steps until the new population is complete.

3.1 Selection: - Select two parent chromosomes from a

population according to their fitness (the better

fitness, the bigger chance to be selected).

3.2 Crossover: - With a crossover probability parents

form a new offspring (children). If no crossover was

performed, offspring is an exact copy of parents.

3.3 Mutation: - With a mutation probability mutate new

offspring at each locus (position in chromosome).

3.4 Accepting: - Place new offspring in a new

population.

4. Replace: - Use new generated population for a further run

of algorithm.

5. Test: - If the end condition (for example number of

populations or improvement of the best solution) is

satisfied, stop and return the best solution in current

population.

6. Loop: - Go to step 2.

IV. RESULTS AND DISCUSSION

Consider a problem of 5 jobs and 5 machines with the

operation sequence and the processing time for each operation

have been determined in the Table 4.1 and Table 4.2given

below.

The programme is run for five times using the population size

= 100, number of iterations for mutation is 0.015 and crossover

is 0.90. The algorithm was terminated after 200 generations,

from the result in Table 4.3, it can be shown that the

Integrated Intelligent Research (IIR) International Journal of Computing Algorithm

Volume: 03 Issue: 02 June 2014 Pages: 176-180

ISSN: 2278-2397

179

combination of critical block, and genetic algorithm could

provide a better result compared to other methods. From Table

4.3, it is seen that the last job (i.e. job 4) is processed on

machine 5 and job 5 is processed on machine 4, themakespan

value for both is same 36. There is a tie, so we need to select

any one of the makespan. The result also gives us the job

sequence for each machine to process, the starting time and the

finish time for each operation. For example, on machine 1, job

3 at time 0 is started to process and finished at 7. Then job 1,

followed by job 5, job 2 and job 4 is processed.

Table 4.1: Processing Time for each Operation

 Machine-

1

Machine-

2

Machine-

3

Machine-

4

Machine-

5

Job-1 8 4 2 6 7

Job-2 3 6 5 2 4

Job-3 7 3 9 4 8

Job-4 4 5 5 4 3

Job-5 3 6 7 4 5

Table4.2: Operation Sequence

 Sequence-

1

Sequence-

2

Sequence-

3

Sequence-

4

Sequence-

5

Job-

1
Machine-3 Machine-1 Machine-2 Machine-4 Machine-5

Job-

2
Machine-2 Machine-3 Machine-5 Machine-1 Machine-4

Job-

3
Machine-1 Machine-5 Machine-4 Machine-3 Machine-2

Job-

4
Machine-4 Machine-3 Machine-2 Machine-1 Machine-5

Job-

5
Machine-5 Machine-3 Machine-1 Machine-2 Machine-4

Table4.3: Result and Analysis

Machines/

Operations

Sequence

Starting

Time

Processing

Time

Finishing

Time

Machine-1 25

Job-3 0 7 7

Job-1 7 8 15

Job-5 23 3 26

Job-2 26 3 29

Job-4 29 4 33

Machine-2 24

Job-2 0 6 6

Job-1 15 4 19

Job-4 19 5 24

Job-5 26 6 32

Job-3 32 3 35

Machine-3 28

Job-1 0 2 2

Job-2 6 5 11

Job-4 11 5 16

Job-5 16 7 23

Job-3 23 9 32

Machine-4 20

Job-4 0 4 4

Job-3 15 4 19

Job-1 19 6 25

Job-2 29 2 31

Job-5 32 4 36

Machine-5 27

Job-5 0 5 5

Job-3 7 8 15

Job-2 15 4 19

Job-1 25 7 32

Job-4 33 3 36

Both types of initial population to the dataare used. First, the

combination of schedules is used, which generated the priority

rules and the randomly generate schedules as the initial

population. From the five runs, the optimum result found

before the generation exceeded 100. Alsoit could be concluded

that if randomly generated schedules as initial population is

used, then only the optimum value at generation larger than

100 is found. However, both results gave the same makespan

value which is 36.

V. CONCLUSIONS

In this paper, the problem of scheduling the jobs in

permutation flowshop scheduling problem is considered. The

main aim of this research is to explore the potential of genetic

algorithms. However, as an observation, it is seen that for

certain types of problem, it may not be worth using

sophisticated procedures. Since, a simple neighborhood search

can obtain solutions of comparable quality very easily. The

overall implication of the studies carried out that the Genetic

Algorithm (GA) produce good results for permutation

flowshop scheduling problem for most sizes and types of

problem, and that it will reach a near to optimal solution rather

more quickly. The study of permutation flowshop scheduling

problem using genetic algorithm provides a rich experience for

the constrained combinatorial optimization problems.

Application of genetic algorithm always gives a good result

most of the time. In near future, this technique could be applied

to a larger size problem to check out its compatibility and

adaptability.

REFERENCES

[1] J.N.D. Gupta, “M-stage Scheduling Problem – A Critical Appraisal”, The

International Journal of Production Research, 8, No. 2, 1971, pp. 276-281.
[2] R.A. Dudek and O.F. Teuton, “Development of M-stage decision rule for

scheduling n-jobs through M-machines”, Ops Res, Vol.12, pp. 471, 1964.

Integrated Intelligent Research (IIR) International Journal of Computing Algorithm

Volume: 03 Issue: 02 June 2014 Pages: 176-180

ISSN: 2278-2397

180

[3] A.P.G. Brown and Z.A. Lomnicki, “Some Applications of the Branch and

Bound Algorithm to the Machine Scheduling Problem”, Operational

Research Quarterly, 17, No. 2, 1966, pp. 173-186.
[4] J.N.D. Gupta, “A General Algorithm for the n × M Flowshop Scheduling

Problem”, The International Journal of Production Research, 7, No. 3,

1969, pp. 241-247.
[5] J.N.D. Gupta, “M-stage Flowshop Scheduling Problem by Branch and

Bound”, Opsearch, (India) 7, No. 1, 1970, pp. 37-43.

[6] S.M. Johnson, “Optimal two-and three-stage production schedules with
setup times included”, Naval Research Logistics Quarterly, Vol.1, pp.61-

68, 1954.

[7] M.R. Garey, D.S. Johnson and R. Sethi, “Complexity of flow-shop and
job-shop scheduling,” Mathematics of Operations Research, Vol.1, Issue

2, pp.117-129, 1976.

[8] C.L. Chen, V.S. Vempati and N. Aljaber, “An application of genetic
algorithms for flow-shop problems”, European Journal of Operational

Research, Vol.80, pp.389-396, 1995.

[9] T. Murata, H. Ishibuchi, and H. Tanaka, “Genetic algorithms for flow shop
scheduling problems”, Computers and Industrial Engineering, Vol.30,

pp.1061-1071, 1996.

[10] C.R. Reeves, “A Genetic algorithm for flow-shop sequencing”, Computers
and Operations Research, Vol.22, Issue 1, pp.5-13, 1995.

[11] S.G. Ponnambalam, P. Aravindan, and S. Chandrasekaran, “Constructive

and improvement flow shop scheduling heuristics: an extensive
evaluation”, Production Planning and Control, Vol.12, Issue 4, pp.335-

344, 2001.

[12] R. Ruiz, and C. Maroto, “A comprehensive review and evaluation of
permutation flow-shop heuristics”, European Journal of Operational

Research, Vol.165, pp.479-494, 2004.

[13] PervaizIqbal, P.S. Sheik Uduman and S. Srinivasan, “Job sequencing
problem using advanced heuristics techniques”, Proceedings of the

International Conference on Applied Mathematics and Theoretical
Computer Science, Vol.1, pp.15-18, 2013.

[14] PervaizIqbal and P.S.Sehik. Uduman, “Mathematical modeling and

behavior of the digestive system of a paper making plant based on queuing
theory”, International Journal of Pure and Applied Mathematics, Vol. 90,

Issue 1, pp.43-56, 2014.

[15] T. Yamada and R. Nakano, “A Genetic Algorithm with Multi-Step
Crossover for Job-shop Scheduling Problems”, International Conference

on Genetic Algorithms in Engineering Systems: Innovations and

Application (GALESIA ’95), 1995.
[16] T. Yamada and R. Nakano, “Genetic Algorithms for Job-shop Scheduling

Problems”, Proceedings of the Modern Heuristic for Decision Support.

pp. 67-81, UNICOM Seminar, 8-19 March 1997, London, 1997.
[17] A. Nagar, S.S. Heragu, J.Haddock, “A combined branch-and-bound and

genetic algorithm based approach for a flowshop-scheduling problem”,

Annal of Operations Research, 63 (1996), 397–414.
[18] V.R. Neppalli, C.L. Chen, J. N. D. Gupta, “Genetic algorithms for the

two-stage bicriteria flow shop problem”, European Journal of Operations

Research, 95 (1996), 356–373.

